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ABSTRACT  
The paper describes the technical challenges and recent solutions that bring the advantages of deep learning to 
the world of embedded connected devices in the battlefield, known as the Internet of Battlefield Things. Deep 
learning has shown significant improvements in fields such as computed vision, speech recognition, and text 
processing, creating unprecedented opportunities for new interaction modalities with smart devices. However, 
deep learning systems are resource intensive. In denied or contested battlefield settings, devices may not be able 
to connect to a back-end cloud for machine intelligence services (the way, Google Home devices do, for 
example, to interpret voice commands or recognize users). Instead, field devices must rely on their own 
resources to process deep learning functions. This leads to several research challenges. First, what deep neural 
network structures can effectively process and fuse sensory input data for diverse sensor fusion applications, 
beyond vision and speech? Second, how to reduce the resource consumption of trained deep learning models so 
they can run on resource-limited devices in the field? Third, how can confidence be estimated in results 
produced by such deep learning devices? Finally, how to minimize the need for labelled data? The paper 
describes experiences with a system called DeepSense that offers an architecture for deep learning geared for 
fusing time-series multi-sensor data. It describes means for reducing the resource consumption of the framework 
by more than an order of magnitude without loss of accuracy. It then presents an approach for estimating 
confidence in results, offering a tradeoff between resource consumption, fidelity, and training needs. Finally, it 
describes how to use unlabelled data for training to reduce the need for labor-intensive data labelling. The work 
directly contributes to the design of AI-empowered Multisensor Fusion Engines that can fit within resource 
limitations in the field to empower a new generation of situation awareness applications.    

1.0 INTRODUCTION 

The Internet of Battlefield Things (IoBT) will integrate sensors, actuators, and computing elements to deliver a 
myriad of defence services that are highly configurable, adaptive, assured, and intelligent. Advances in sensing, 
computing, and communication technologies create opportunities for automating several defence functions such 
as data collection and analysis (to meet decision needs), damage assessment, anomaly detection, and logistics 
management. Machine learning holds the promise that future computing devices, used in military operations, 
will offer human-like capabilities, such as scene understanding, voice recognition, complex activity detection, 
and problem diagnostics. Recent advances in deep learning have revolutionized the field through the 
development of algorithms that train neural networks to perform human-like tasks with a significant degree of 
accuracy.  

Several challenges, however, must be solved before deep learning can empower military multi-sensor fusion 
systems [5]. For example, what deep neural network structures can effectively process and fuse sensory input 
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data for diverse fusion applications? How to reduce the resource consumption of deep learning models such that 
they can be efficiently deployed on resource-constrained devices? How to compute confidence in the correctness 
of deep learning outputs? Finally, how to minimize the need for labelled data in learning? This paper covers four 
recent advances in deep learning, developed by the authors, addressing the above problems: 

• First, we describe a general architecture for deep neural networks that is geared specifically for multi-
sensor data fusion. This architecture is designed to recover spatio-temporal patterns in multi-sensor data 
by a clever exploitation of different types of neural networks, including (i) fully connected networks 
(that recover global spatial patterns), (ii) convolutional networks (that recover local spatial patterns), and 
(iii) recurrent networks (that recover temporal trends).    

• Second, we discuss recent advances in neural network compression that allow significant reduction in 
the memory footprint, execution latency, and total energy consumed by trained neural networks, all 
without an appreciable reduction in result quality. These advances allow fitting deep neural networks 
into a very small form factor, so they can live inside devices that can be embedded within a variety of 
battlefield “things” such as weapons and munitions, thereby producing intelligent behaviour.   

• Third, we describe solutions that allow us to compute confidence in results of deep learning systems. 
Hence, not only will such systems be able to derive insights from input data (e.g., recognize individuals 
from their sensory signatures), but also compute appropriate confidence estimates in their observations.  

• Finally, a big drawback of deep learning systems is the need for labelled data for training. Many military 
systems will have sensors that collect data. Labelling such data, however, is a very resource intensive 
process. To alleviate this problem, recent work has done significant advances on training neural 
networks using primarily unlabelled data.  

We elaborate on these core problems and their emerging solutions to help lay a foundation for building IoBT 
systems enriched with effective, efficient, and reliable deep learning models. 

2 DEEP LEARNING ARCHITECTURE FOR MULTISENSOR FUSION 

One key question in designing a deep learning architecture for multi-sensor fusion is to decide on the type of 
neural networks to use as well as their interconnection. Briefly, a neural network is composed of several layers 
of computing nodes. Each node in a given layer is connected to nodes in the previous layer via links of various 
weights. Individual nodes emulate individual neurons, inspired by the anatomy of the human brain. Each node 
implements a nonlinear function of inputs to produce its output. Hence, by controlling the weights on the links 
between nodes one can implement arbitrary nonlinear mappings and transfomations. The input to the first stage 
of the network is the raw data collected (e.g., individual pixels of an image). The output of the last stage is the 
result being computed (e.g., the identity of the individual in the picture). The key advance in deep learning 
literature has been the development of training algorithms that adjust link weights automatically by exposing the 
neural network to training inputs, coupled with corresponding ground truth output labels. During training, link 
weights are adjusted in a manner that reduces divergence of network outputs from the ground truth labels over 
time, essentially learning the complex nonlinear function between inputs and outputs. 

Algorithms for several types of deep neural networks were designed. Fully connected neural networks are those 
where each node in a layer is connected to all nodes in the previous layer. They are good at extracting global 
spatial patterns. Convolutional neural networks are those where each node in one layer is connected to only a 
subset of nodes in the previous layer. They can extract complex local features, such as those necessary to 
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identify handwritten letters on a larger surface, or a small object within a larger image. Finally, recurrent neural 
networks accept, as input, data from multiple points in time and extract temporal trends.  

Arguably, as an alternative to using deep neural networks, one can use laws of physics to derive the needed 
outputs from sensor data. For example, in a location estimation task, one can double-integrate inputs that 
comprise accelerometer data to obtain velocity and position. The problem with such approaches is that they are 
prone to noise. Most estimators make assumptions on the statistical distribution of noise offering accurate results 
only when such assumptions are satisfied. In the complex battlefield environment, noise is hard to model. It may 
be non-linear, non-additive, correlated, and biased. Since neural networks are composed of nonlinear elements, 
they can learn very complex nonlinear relations, allowing the extraction of signals from noise even when the two 
are intertwined in a complex nonlinear fashion.   

Moreover, unlike other machine learning approaches that rely on the design of clever input features (to support 
the intended estimation or classification tasks), deep learning has the advantage of being able to ingest raw data 
directly and automatically compose relevant features by adjusting link weights. Hence, less human effort is 
consumed in feature engineering. In a world dominated by data and computing devices, saving human cognitive 
bandwidth by employing a machine could be a good trade-off. 

A novel framework, called DeepSense [1], was recently proposed as a general-purpose learning framework for 
sensor fusion systems. It integrates convolutional neural networks (CNN) and recurrent neural networks (RNN) 
to extract spatio-temporal features of input signals. Sensory data are aligned and divided into time intervals for 
processing. For each interval, DeepSense first applies an individual CNN to each sensor data stream, encoding 
relevant local features. A (global) CNN is then applied to the respective outputs to model interactions among 
multiple sensors for effective sensor fusion. Next, an RNN is applied to extract temporal trends. Multi-sensor 
fusion systems are generally categorized into two common subgroups: systems that do estimation and systems 
that do classification (depending on whether the sought results are continuous or categorical, respectively). 
Hence, at the last stage, either an affine transformation or a softmax output is used by DeepSense, depending on 
whether the output is an estimation or a classification result. 

This architecture solves the general problem of learning how to perform complex multi-sensor fusion tasks for 
purposes of estimation or classification from time-series data. For estimation-oriented problems, DeepSense 
learns the physical system, thereby yielding accurate outputs despite noise in sensor data. For classification-
oriented problems, the neural network acts as an automatic feature extractor that encodes local, global, and 
temporal information. DeepSense can be easily customized for a specific IoBT application. The detailed 
mathematical formulation of the DeepSense learning algorithm can be found in a related paper [1]. 

An evaluation of DeepSense has shown that it does very well on tasks involving target recognition (e.g., 
identification of a specific individual from sensor measurements) as well tasks involving activity detection (e.g., 
separation of walking versus running, regardless of differences across individuals in how the activity is 
performed). DeepSense also outperformed estimators derived from laws-of-physics, when applied to tasks 
amenable to a clean theoretical formulation, such as dead reckoning (position estimation) from accelerometer 
and gyroscope data. Fig. 1 illustrates an example of the quality of position estimation, comparing actual position 
of a vehicle in motion to that computed from noisy accelerometer and gyroscope data using a deep neural 
network. 
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Figure 1: Quality of vehicle position estimation using a deep neural network that processes input 

from a noisy accelerometer and a gyroscope. The figure compares the actual position of the vehicle 
(red circles) to the estimated one (blue circles). 

The results offer evidence that a general deep learning architecture can beat hand-crafted solutions designed for 
the individual application spaces. While current work is by no means a consummate proof of generalizability, a 
main appeal of applying deep learning in IoBT contexts lies in obviating the need for human-intensive per-
application customization. More research is needed to substantiate or refute the early evidence and to understand 
the limits of generalizability of learning models across various systems and applications. 

2. COMPRESSING DEEP NEURAL NETWORKS 

Once trained, deep neural networks can be used to perform complex estimation, prediction, detection, or 
identification/classification tasks. Unfortunately, typical networks produced by deep learning techniques are very 
large. They may include several hundred layers, each composed of possibly thousands of nodes. Clearly, 
execution of such complex structures will consume a significant amount of resources. Often the observed 
phenomena evolve over lower-dimensional manifolds. This observation suggests that neural networks produced 
by deep learning methods can be reduced in size, perhaps without significant loss of accuracy.  

Several attempts were made to simplify deep neural networks after they have been trained. One approach is to 
remove edges that have low weights. The removal produces a sparse matrix (to represent the neural network), 
where most of the cells are zeros. The sparsity of the matrix allows for reductions in storage and computation 
time. Unfortunately, these reductions do not scale proportionally to the fraction of zero entries in the sparse 
matrix. This is because sparse matrix algebra is not as efficient as dense matrix algebra. To illustrate, Table 1 
shows the time it takes to multiply a matrix of indicated dimensions by a vector, when only 1% of the elements 
in the matrix are non-zero (as a fraction of time consumed when all elements are non-zeros). As can be seen, the 
processing time is significantly above 1%. 
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Table 1: Normalized processing time of a (m X k) matrix with only 1% non-zero entries, when multiplied 
by a (k X 1) vector. Observe that the processing time is significantly larger than 1% of the time needed 
to multiply a matrix with no zero entries. Hence, savings do not scale proportionally to the fraction of 

zero entries. 

 

An extension of DeepSense, called DeepIoT [6], removes nodes instead of edges to fix the above problem. 
Removal of entire nodes from the neural network is equivalent to removal of entire rows/columns from the 
corresponding matrix. This produces a new matrix that is also dense, but that has smaller dimensions. The 
approach was shown to be significantly more effective at reducing resource consumption.  

DeepIoT searches a large space of reduced neural network architectures by dropping nodes according to some 
dropout probabilities. A thinned network structure is thus generated. The challenge is to set these dropout 
probabilities in an informed manner to find the optimal slim network structure that preserves the accuracy of 
sensing application results, while maximally reducing the resource consumption. To do so, DeepIoT exploits 
redundancies in the learned network structure. From the perspective of model compression, an element that is 
more redundant should have a higher probability to be dropped. A contribution of DeepIoT lies in exploiting this 
insight to significantly reduce network size. DeepIoT takes model parameters of each layer as input, learns 
parameter redundancies, and generates dropout probabilities accordingly, allowing for an efficient search in the 
space of reduced network architectures for one that minimally compromises quality of results [6]. The system 
was shown to reduce resource consumption by nearly two orders of magnitude, almost without jeopardizing 
result quality. Figure 2 shows representative measurements illustrating how output accuracy depends on the 
resource consumption of the neural network for an image recognition task. As the network is compressed, the 
inference time and inference energy are decreased (on the horizontal axis). Ultimately, quality is affected (see 
the vertical axis). The leftmost curve in both figures is for DeepIoT. It shows that it maintains the original quality 
of an uncompressed system the longest (until resources consumed drop by almost two orders of magnitude). 
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Figure 2: The relation between result accuracy and both inference time (left) and inference energy 
(right) of a neural network as it is compressed using three different approaches, when performing an 
image recognition task. DeepIoT shows the best trade-off between accuracy (of image recognition) 

and resource consumption. 

The success of DeepIoT suggests an interesting question. If significantly reduced network structures are so good 
at representing the learned phenomena, what would happen if one simply used a much smaller neural network 
during training to begin with (instead of using a large one initially then reducing it after it is trained)? 
Interestingly, using a smaller network from the start does not lead to the same result. Rather, it reduces quality 
significantly. An informal intuition lies in the following analogy. Imagine resource consumption of a neural 
network to be represented by “elevation” in some feature space. It could be that some lower-elevation points that 
are particularly high quality are completely surrounded by high-elevation ridges in the feature space. These 
enclosed points are therefore unreachable from the “bottom” without climbing over a high-elevation ridge first to 
find them. Starting by training a large neural network is equivalent to climbing the high-elevation ridge. Starting 
from a small neural network does not explore the high elevation points, thus potentially failing at discovering 
some of the favourable local minima that are enclosed by the higher ridges. Those are discoverable only by 
training a larger network then compressing it in search of favourable local minima.  

The above intuition reflects the fact that training a neural network is a highly nonlinear process that is prone to 
getting trapped in local minima. Training a lower-dimensional network from the start is likely to converge to a 
low-quality local minimum. In contrast, training a larger network then compressing it using the DeepIoT 
framework converges to a better solution.  

3. OFFERING ASSURED RESULTS 

The next problem concerns assessing the reliability of deep learning models. In particular, how does one offer 
principled uncertainty estimates that can faithfully reflect the correctness of model predictions? Principled 
uncertainty estimation is critical when deep learning is used to support applications that require quantified 
reliability assurances. Recent work focused on two related challenges. First, how to develop methods that 
provide accurate uncertainty estimates in prediction results obtained from deep learning models? Second, how to 
develop resource-efficient solutions for the uncertainty estimation problem, such that they can be implemented 
on resource-limited devices? 

A simple, well-calibrated and efficient uncertainty estimation algorithm for the multi-sensor data fusion 
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problem, called RDeepSense, was recently proposed [3] as an extension of DeepSense [1]. It emits a distribution 
estimate instead of a point estimate at the output layer. Intuitively speaking, the algorithm models node outputs 
with random variables and estimates their distribution parameters. Estimation of the mean of the random 
variable is what traditional learning does. Estimation of the variance, however, is what yields confidence in 
results. A smaller estimated variance corresponds to a higher confidence in the computed mean. 

Interestingly, the estimation of the mean and the estimation of the variance are interrelated. Typically, the 
estimator jointly determines both by minimizing some error function. The choice of that function has an 
important effect on estimation accuracy of the two parameters. Specifically, using common error functions, such 
as the mean square error, was shown underestimate the uncertainty. This is so because such an estimator predicts 
a very accurate mean value. If the mean value is estimated well, the variance observed around that mean on 
training data is small and may thus underestimate variance encountered later during testing. In contrast, when 
using a nonlinear error function, such as the negative log-likelihood, the estimated mean is often biased (because 
the nonlinearity penalizes erring on one side more than erring on the other, causing the estimated mean to drift 
towards the heavily penalized side). The biased (i.e., incorrect) mean estimate results in increased measured 
variance around the mean, leading to an artificially inflated uncertainty estimate. 

RDeepSense exploits the above intuition to arrive at an estimate of variance that neither underestimates nor 
overestimates the true value. Specifically, it uses a weighted sum of the above two error functions (namely, 
means square error and negative log-likelihood) as the combined loss function. The weights are adjusted 
(calibrated) such that the underestimation and overestimation roughly cancel out. RDeepSense was shown to 
generate very good uncertainty estimates that allow defining accurate confidence intervals for outputs of the 
deep learner. An example is shown in Figure 3. 

  

Figure 3: The relation between estimated confidence window (horizontal axis) and percentage of 
data that falls in that window (vertical axis) for different confidence estimation algorithms. When 

confidence is properly estimated, x% of the data should fall in an x% confidence window. The 
RDeepSense curve comes closest to such an identity function (a diagonal line). 

 

Figure 3 shows the relation between the confidence window and the percentage of outputs that fall in that 
window for different confidence estimation algorithms applied to a representative learning task. The task in 
question was to estimate commute delays between points in New York City as a function of related variables, 
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such as start and end locations and time of day. For example, when an 80% confidence window is computed, 
80% of the data should fall in that window. Similarly when a 90% confidence window is computed, 90% of the 
data should fall in that window. In other words, the ideal relation between the confidence window (shown on the 
horizontal axis) and the percentage of data falling into it (shown on the vertical axis) should be the identity 
function (a diagonal line). As can be seen from the figure, RDeepSense comes closest to the diagonal line in this 
experiment. Regarding resource efficiency, since RDeepSense emits a distribution estimate instead of a point 
estimate at the output layer, it does uncertainty estimation in a single run. Compared with sampling-based and 
ensemble-based methods [4], RDeepSense has a much reduced execution time and energy consumption. 

The ability to compute confidence in deep learning results offers another interesting resource optimization 
possibility. Namely, one may structure a deep neural network into stages, each consisting of several layers, and 
compute confidence in (intermediate) results after each stage. Once a high-enough confidence is reported, it 
becomes possible to skip the execution of the remaining stages. For example, consider a deep neural network 
whose job is to identify the presence of humans in a landscape. The presence of humans may be easier to 
identify in some images than others. Consequently, it could be that fewer stages need to be executed for some 
images to reach an acceptable level of confidence in results. Figure 4 depicts a scheduler that uses the above 
intuition to schedule multiple inference tasks in a manner that maximizes marginal increase in confidence. In this 
framework, once a point of diminishing return is reached during the execution of an inference task, the inference 
task in question can be stopped and results returned even if some stages of the corresponding deep neural 
network have not yet been executed. 

 

Figure 4: An uncertainty-aware framework for deep neural network execution. Inference tasks are 
executed until the point of diminishing returns (in confidence in result quality). The rest of the deep 

neural network is then skipped 
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4. LEARNING FROM UNLABELED DATA  

A general disadvantage of deep learning methods lies in the need for large amounts of labelled data. To learn 
well from empirical measurements, the neural network must be given a sufficient number of labelled examples 
from which network parameters are to be estimated. Since the number of parameters is large, so is the required 
number of labelled examples. This needs for labelling offers a significant practical impediment to the use of deep 
learning in practical contexts, where labelling cannot be easily done.   

Recently, Generative adversarial networks (GAN) have been proposed as a promising deep learning technique 
for unsupervised and semi-supervised learning [2]. The GAN training strategy is to define a game between two 
competing networks; a generator network and a discriminator network. The generator network picks arbitrary 
labels then selects the most appropriate input data for the label from the (unlabelled) input space. The 
discriminator network receives a mix of samples produced by the generator network (i.e., labels paired with 
previously unlabelled input measurements), and true (correctly labelled) data. Its goal is to learn to distinguish 
between the two. An error function for the discriminator computes how successful it is at separating originally 
labelled data from data labelled by the generator. 

The generator is trained to fool the discriminator. As the discriminator learns to separate the two data streams, it 
shares its model with the generator. The generator uses that model to increase its sophistication in generating 
realistic-looking samples to fool the discriminator. The GAN training strategy thus leverages the unlabelled data 
to improve both the generator and discriminator, which results in improving the ability of the system to label 
data in a manner that is indistinguishable from known ground truth samples, essentially improving the mapping 
from the input space to the output space taking into account both labelled and unlabelled inputs. Evaluation 
shows that the semi-supervised strategy greatly improves performance (over using labelled data alone), while 
reducing the need for larger amounts of labelled data.  

The intuition why unlabelled data can improve the performance of learning lies in that it carries information on 
the structure of the input space. For example, assume we knew that sensors were inserted into lakes to measure 
their chemical composition. Figure 5-a (left) shows to samples (filled-in black circles) labelled lake A and B, as 
well as one unlabelled sample (filled-in grey circle). It is hard to guess which lake the unlabelled sample belongs 
to. Figure 5-b (right), on the other hand, shows the aforementioned samples together with many more unlabelled 
ones. The new unlabelled samples give insight into the structure of the input space (i.e., the lakes) from which 
the samples were drawn. It strongly suggests that the unlabelled grey circle belongs to lake A. In fact, most of 
the data labels can be guessed at that point. 

 

(a)                                                                                    (b) 

Figure 5: Illustration of the basic insight why unlabelled data helps the learning process. On the left 
(4-a) only one unlabelled point is given. It is hard to guess the label. On the right (4-b) more 

unlabelled points are shown. Consequently, labels are easier to guess.  
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5. CONCLUSIONS  

The above discussion presented recent advances in deep learning that customize the computational power of this 
approach to the needs of multi-sensor data fusion systems operating in potentially resource-scarce environments. 
The presented results suggest that substantial resource economies are possible by compressing larger neural 
networks to fit embedded devices without an appreciable quality degradation. Surveyed recent work also 
suggests that accurate estimates of confidence in results can be attained and that unlabelled data can be used to 
improve learning quality. Several questions are left for future work. For example, how can different devices 
share the deep learning burden? In an environment with many computing nodes with different connections to 
various sensors, how much of the deep neural network architecture should run on which node? Can one exploit 
sensing redundancies to further reduce the resource consumption of learning algorithms? Are current deep 
learning methods optimal for signal processing tasks that are typically performed in the frequency domain (as 
opposed to the time domain)? While one can ingest frequency domain features as deep learning inputs, would 
additional improvements be gained if the training algorithms were re-designed specifically for frequency domain 
signals? How susceptible are deep learning systems to adversarial manipulation, such as wilful mislabelling of 
data or compromised sensor measurements? Does their susceptibility increase when compressed to fit on smaller 
devices, or does compression actually improve robustness? The argument for the latter would follow the 
common wisdom that more complex solutions are usually more sensitive to assumptions that underlie their 
correctness, whereas simpler solutions (while not as performant) are often more robust. Can one add 
explainability in addition to confidence when presenting deep learning results? These topics are currently an 
active area of research in investigating advantages of deep learning for multi-sensor fusion systems.    
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